

Heteroscedastic Uncertainty Estimation Framework for Unsupervised Registration

Xiaoran Zhang*¹, Daniel Pak*¹, Shawn Ahn¹, Xiaoxiao Li², Chenyu You¹, Lawrence Staib¹, Albert Sinusas¹, Alex Wong¹, James S. Duncan¹ 1. Yale University, 2. University of British Columbia, *Equal contribution

Summary

We propose an unsupervised image registration framework that extends the commonly used homoscedastic noise assumption to heteroscedastic.

Introduction

Homoscedastic means uniform; heteroscedastic refers to non-uniform.

 Unsupervised registration aims to align two images without any labels.

Existing methods commonly use a intensity-based objective, such as mean squared error.

Motivation

Existing image registration approaches often assume homoscedastic noise, whereas real-world medical images exhibit heteroscedastic noise.

Existing approaches:

Ours approach:

Adaptive exponentiated SNR weighting

Simplified **homoscedastic** noise assumption

Displacement estimator loss $\mathcal{L}_{ heta} = \mathbb{E}_{\Omega} \left[\mathcal{T} \left[\left(rac{I_f}{\lfloor \hat{\sigma}_I
floor}
ight)^{2 \gamma}
ight] [I_f - \hat{I}_f]_2^2 + \lambda \|
abla \hat{z} \|^2
ight]$

Variance estimator loss

 $\mathcal{L}_{\phi} = \mathbb{E}_{\Omega} \left[\lfloor \hat{\sigma}_{I}^{2eta}
floor \left(rac{1}{\hat{\sigma}_{I}^{2}} [I_{f} - \lfloor \hat{I}_{f}
floor]]_{2}^{2} + \log \hat{\sigma}_{I}^{2}
ight)
ight]$

• A relative weighting instead of absolute $p(x) \sim rac{1}{\hat{\sigma}_I(x)} o p(x) \sim rac{I_f(x)}{\hat{\sigma}_I(x)}$

• γ controls confidence of current noise variance estimate.

Registration accuracy

Preliminary

Modeling heteroscedastic noise as aleatoric uncertainty

- Two types of uncertainty: aleatoric and epistemic.
- Heteroscedastic noise is a type of aleatoric uncertainty, which can be expressed as: $Y = \mu(X) + \epsilon(X)$ $\epsilon(X) = \mathcal{N}(0, \sigma^2(X))$

• The following objectives learn the input-dependent mean and variance:

 $\mathcal{L}_{ ext{NLL}} = rac{1}{N} \sum_{i=1}^{N} rac{1}{2\hat{\sigma}^2(x_i)} \|y_i - \hat{\mu}(x_i)\|_2^2 + rac{1}{2}\hat{\sigma}^2(x_i)$ $\mathcal{L}_{eta- ext{NLL}} = rac{1}{N} \sum_{i=1}^{N} \lfloor \hat{\sigma}^{2eta(x_i)}
floor \left(rac{1}{2\hat{\sigma}^2(x_i)} \|y_i - \hat{\mu}(x_i)\|_2^2 + rac{1}{2}\hat{\sigma}^2(x_i)
ight)$

Naive integration to image registration

• Fixed is a noisy observation of the moved: $p(I_f|\hat{z};I_m) = \mathcal{N}(\hat{I}_f;I_m,\hat{\sigma}_I^2)$ • Preliminary objective: $\mathcal{L} = \mathbb{E}_{\Omega} \left[\frac{1}{\hat{\sigma}_{T}^{2}} [I_{f} - \hat{I}_{f}]_{2}^{2} + \log \hat{\sigma}_{I}^{2} + \lambda \|\nabla \hat{z}\|^{2} \right]$

Evaluation on heteroscedastic uncertainty

Sparsification error: remove one pixel at a time from largest to smallest uncertainty magnitudes, measured the MSE of the remaining pixels.

^E NLL

 $\Xi \beta$ -NLL

Ours

Ours

			_				
	ACDC			CAMUS			
	$DSC\uparrow$	$\mathrm{HD}\downarrow$	ASD \downarrow	DSC \uparrow	$\mathrm{HD}\downarrow$	$ASD \downarrow$	
Undeformed	47.98	7.91	2.32	66.77	10.87	2.61	
Elastix [3]	77.26	4.95	1.28	80.18	10.02	1.81	
vxm (NCC)	78.55	4.94	1.29	77.01	10.23	1.89	
vxm (MI)	78.04	5.25	1.35	78.18	9.83	1.99	
vxm (MSE) †	80.20	4.64	1.24	81.76	8.93	1.70	
ZNLL	76.49	5.46	1.45	75.24	11.05	2.20	
β -NLL	78.74	5.07	1.33	79.75	9.39	1.93	
AdaFrame	66.38	5.80	1.67	77.88	10.54	1.93	
AdaReg	78.75	5.13	1.33	79.31	9.78	1.88	
Ours	80.73	4.57	1.21	81.96	8.80	1.66	
tsm (NCC)	73.77	6.64	1.12	73.03	11.87	1.70	
					11 01	1 00	

Recon. ES (Ours)

Οu tsm (MI) $74.83 \ 11.94 \ 1.83$ 13.51 $\frac{1}{2}$ tsm (MSE) 79.24 10.30 1.79 1.3075.08 11.60 1.79 77.39 10.99 1.86 75.74 1.29AdaFrame 67.951.5978.06 9.86 1.915.7276.22 5.681.2978.12 10.62 1.84 AdaReg and datasets **78.12 5.04** 1.26 **80.38 9.86** 1.72

Effect of y								
		ACDC			CAMUS			
	$\mathrm{DSC}\uparrow$	$\mathrm{HD}\downarrow$	ASD \downarrow	$DSC\uparrow$	$\mathrm{HD}\downarrow$	$\mathrm{ASD}\downarrow$		
$\operatorname{ars}\left(\gamma=0.25\right)$	79.74	4.74	1.26	82.07	8.53	1.65		
$ m ars~(\gamma=0.5)$	80.73	4.57	1.21	81.96	8.80	1.66		
$\operatorname{ars}\ (\gamma=0.75)$	80.00	4.69	1.24	81.82	8.45	1.66		
$ m ars~(\gamma=1)$	79.78	4.71	1.25	81.31	9.08	1.69		
framework by registering								
end-diastole (ED) frame to								
end-systole frame (ES).								
Our proposed approach								
consistently outperforms								
baselines in various architectur								

Qualitative visualization

Sparsification error

0.2 0.4 0.6 0.8

Our estimated uncertainty is visually sensible and quantitatively supported by sparsification error metrics.

Incorporating displacement uncertainty

 $\mathsf{Displacement\ loss:}\ \ \mathcal{L}_{\theta} = \mathbb{E}_{\Omega} \left| \mathcal{T} \left| \left(\frac{I_f}{\lfloor \sigma \hat{\rfloor}_I} \right)^{2\gamma} \right| [I_f - \hat{I}_f]_2^2 + \alpha \left(\hat{\sigma}_z^2 - \log \hat{\sigma}_z^2 \right) + \lambda \| \nabla \hat{z} \|^2 \right|$

Estimated σ_{z}^{2} (Vxm-diff)

Estimated σ_{τ}^2 (Ours)

Quantitative evaluation

	Uncertainty			ACDC			CAMUS			
	σ_z^2	σ_I^2	$DSC\uparrow$	$\mathrm{HD}\downarrow$	$ASD \downarrow$	$DSC\uparrow$	$\mathrm{HD}\downarrow$	$ASD \downarrow$		
Vxm	X	×	80.20	4.64	1.24	81.76	8.93	1.70		
Vxm-difl Ours	f 🗸	× ×	$76.19 \\ 79.80$	5.75 4.74	1.19 1.22	$76.74 \\ 81.47$	$\begin{array}{c} 10.76\\ 8.67\end{array}$	$\begin{array}{c} 1.88\\ 1.69\end{array}$		
Ours Ours	× ✓	1	80.73 79.87	4.57 4.62	$\begin{array}{c} 1.21 \\ 1.20 \end{array}$	81.96 81.91	8.80 8.54	1.66 1.65		

uncertainty.

Paper: https://arxiv.org/abs/2312.00836

Code: https://github.com/Voldemort108X/hetero_uncertainty

Funding: NIH/NHLBI grant R01HL121226.